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phosphorinane ligands was investigated uncovering an interesting ligand effect. The scope of the most
effective 4-hydroxyl-substituted phosphorinane ligand in Suzuki cross-coupling with challenging aryl
chlorides is described.
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1. Introduction

Palladium-catalyzed C–X (X = C, N, O, S) bond forming reactions
have been extensively investigated over the last few decades.
Many of these processes have become standard reactions in effect-
ing these important bond connections.1 A wide range of applica-
tions on both laboratory and industrial scales have been
developed.2,3 New and emerging ligands have expanded the scope
of substrates that enter such catalytic cycles to include less reac-
tive aryl chlorides and chemoselectivity to include substrates sus-
ceptible to b-hydride elimination. The dialkylbiarylphosphines
(Fig. 1, A) introduced by Buchwald and co-workers have allowed
for some remarkable advances in catalyst stability and general
reactivity. The ligand structural features required have been exten-
sively investigated in this series.1b In general, incorporation of an
electron-rich phosphine increases the rate of oxidative addition
while steric bulk at phosphorus increases the rate of reductive
elimination. In addition, the lower aryl ring of these ligands is gen-
erally electron rich which provides additional p-type Pd-arene sta-
bilizing interactions in the active L1-Pd0 catalyst.4

Other interesting examples of such hemilabile ligands include
the P,O-type indolylphosphines B introduced by Kwong and
co-workers for Suzuki–Miyaura and other coupling,1d,5 the BIPI
P,N-type ligands C introduced by Busacca et al. for Pd-mediated
Heck coupling and asymmetric hydrogenation,6 the pyrrole- and
imidazole- based systems D introduced by Beller,7 and the ketal-
containing P,O-type ligands E introduced by Guram and co-work-
ers for the Suzuki cross-coupling of aryl chlorides.8c The desire to
activate inexpensive, readily available aryl chlorides has been a
driving force behind the development and application of many of
these ligands.8 The general structural feature incorporated into
ll rights reserved.
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the design of all these ligands is the presence of a bulky, elec-
tron-rich phosphine donor in addition to a weaker, tunable n- or
p- Lewis basic hemilabile donor. Monodentate complexes of type
L1-Pd0 are implicated1p as the key species involved in the initiating
oxidative addition step in these catalytic cycles. The additional
weak Pd-ligand interaction provides a stabilizing and tunable
appendage to the unsaturated catalyst.

2. Results and discussion

We recently reported on the use of a series of a P-substituted
phorone-derived tertiary phosphines, analogs of ligand 3c
(Fig. 2), as part of our ongoing research with new ligand scaffolds.9

The phosphorinane ligands incorporate a variably substituted
phosphine within a rigid, bulky di-tertbutyl-like framework. Many
structurally interesting P,O-type ligands have now been reported
in the Suzuki and other cross-coupling reactions.1d It occurred to
us that the monodentate ligand scaffold 3c could possibly be further
D E

Figure 1. Selected examples of hemilabile phosphine ligands.
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Scheme 1. Reagents: (A) LiAlH4, THF; (B) ethylene glycol, PTSA; (C) hydrazine, KOH.
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Figure 2. P-Cyclohexylphosphorinone 2 and 4-substituted analogs 3a, 3b, and 3c.

Table 1
Suzuki cross-coupling reaction of various aryl chlorides and phenylboronic acids with
Pd-complex of 3a12

Ar-Cl  PhB(OH)2 Ar-Ph
3a, Pd(OAc)2, 1.0 mol%
Cs2CO3, 3.0 eq
toluene, 110 ºC, 16h 

+
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tuned to function as a hemilabile-bidentate ligand 3a of the type de-
scribed above through the incorporation of a novel design feature
involving a chair–boat conformational change. This design feature
is outlined in Figure 3 in which it is postulated that a remote 4-hy-
droxyl substituent could function to stabilize the catalyst in a boat
conformer, but generate the reactive monodentate L1-Pd0 species
through a ring flip to the chair conformer of 3a as shown.

In order to probe this possibility, the series of phosphorinane
derivatives shown in Figure 2 were prepared. In this Letter we re-
port on the synthesis of these phosphorinane ligands (Fig. 2) and
their application in the Suzuki–Miyaura cross-coupling reaction,
including the successful activation of challenging aryl chlorides.

The required parent P-cyclohexylphosphorinone 2 (Scheme 1)
was readily obtained through the double Michael addition of
mono-cyclohexylphosphine 1 to phorone.10 Attempts to prepare
the 4-hydroxylphosphorinone 3a using NaBH4-mediated reduction
of the ketone 2 yielded the phosphine-borane adduct of 3a which
proved difficult to deprotect.9a The desired product 3a was readily
made via LiAlH4-mediated reduction of 2 however. The 4-substi-
tuted ketal 3b, analogous to the Guram ligand E (Fig. 1) and the
unsubstituted derivative 3c were prepared via standard ketalization
and Wolf-Kishner reduction, respectively, of the parent ketone.11

Many catalyst systems are now known for Suzuki–Miyaura
cross-couplings of aryl bromides and iodides. We opted to focus
on the activation of challenging aryl chlorides, in particular elec-
tron-rich and ortho-substituted derivatives, in order to realize the
true potential of these new ligands. The Suzuki cross-coupling of
4-chloroacetophenone (1.0 equiv) with phenyl boronic acid
(2.0 equiv) was first investigated. A catalyst system comprising
palladium (II) acetate (1.0 mol %), ligand 2, 3a, 3b, or 3c
(3.0 mol %) and cesium carbonate was investigated in toluene.
The cross-coupling was followed through monitoring the disap-
pearance of the aryl chloride and appearance of the biaryl using
GC. While all the ligands proved partly successful, ligands 3a
and 3c gave a complete conversion of the aryl chloride in 1.5 and
2 h, respectively. The ketal-containing ligand 3b was least success-
ful, requiring 24 h to give 80% conversion of the aryl chloride. The
activation of electron-rich aryl chlorides is among the more chal-
lenging issues in Pd-mediated cross-coupling. Ligands 3a and 3c
also proved effective in the activation of 4-chloroanisole under
the same conditions, although as expected the reactions were
slower. Nonetheless, full conversion of 4-chloroanisole was
realized within 16 hours using ligand 3a. Under these conditions,
ligand 3c gave around 69% conversion, comparable to other
P
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Figure 3. Bi- and monodentate complexes of ligand 3a.
P-substituted phosphorinanes previously investigated,7b and re-
quired up to 48 h to achieve full conversion.

The scope of the Suzuki–Miyaura cross-couplings employing li-
gand 3a with a range of activated and non activated aryl chlorides
was investigated and results are collected in Table 1. All reactions
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were performed under the conditions described above and, in
order to allow direct comparison, the reactions in the Table were
terminated after 16 h and isolated yields of the biaryl adducts
are shown. The Pd-complex of ligand 3a proved to be highly effec-
tive in activating a wide range of substrates including most notably
chloroanisole (entry 5) and the more difficult 2,4-dimethoxychlo-
robenzene (entry 4), which gave a respective 60% isolated yield.
By direct comparison, the use of a Pd-DABCO-based catalyst in
DMF, at 110 �C for 19 h provided 63% yield of the same product
from 2,4-dimethoxychlorobenzene,13a while a solvent-free
Pd-Cy3P catalyst system was reported to give 78% yield of this
product.13b The present results therefore place the 4-hydroxyl-
substituted phorone 3a among only a handful of systems that
allow activation of these most challenging electron-rich and
ortho-substituted aryl chlorides.

That the 4-hydroxyl substituted phosphorinane 3a proved to be
the ligand of choice in this reaction is interesting given the remote
nature of this hydroxyl group from the strongly co-ordinating
phosphorus donor. It is difficult to consider an explanation other
than the hypothesis that this ligand functions as a hemilabile
P,O-bidentate ligand in accord with the models shown in Figure
3. Ligand 3a may thus be considered a member of the expanding
class of useful hemilabile-bidentate ligands collected in Figure 1.
The incorporation of a strongly co-ordinating, sterically hindered
soft phosphine donor and a second, weaker co-ordinating atom
into a bidentate ligand core may thus be a useful general feature
allowing participation of 14- and 16-electron palladium species
at various points in the catalytic cycle.
3. Conclusion

In conclusion, a series of 4-substituted phosphorinane ligands
were prepared. The ligand P-cyclohexyl-4-hydroxy-2,2,6,6-tetram-
ethylphosphorinane 3a proved most effective in the Suzuki–Miya-
ura cross-coupling of challenging aryl chlorides disclosing an
interesting ligand substituent effect. This ligand is among a handful
that are currently available that allow activation of these sub-
strates. The use of such hemilabile ligands in cross-coupling pro-
cesses appears to be a general structural feature, we are
currently exploring other structural types that incorporate this fea-
ture. Ligand 3a is easily prepared in two steps from commercial
materials. Further modification of ligand 3a, including immobiliza-
tion onto a solid support14,15 and its application to other cross-cou-
pling processes is under investigation.
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